

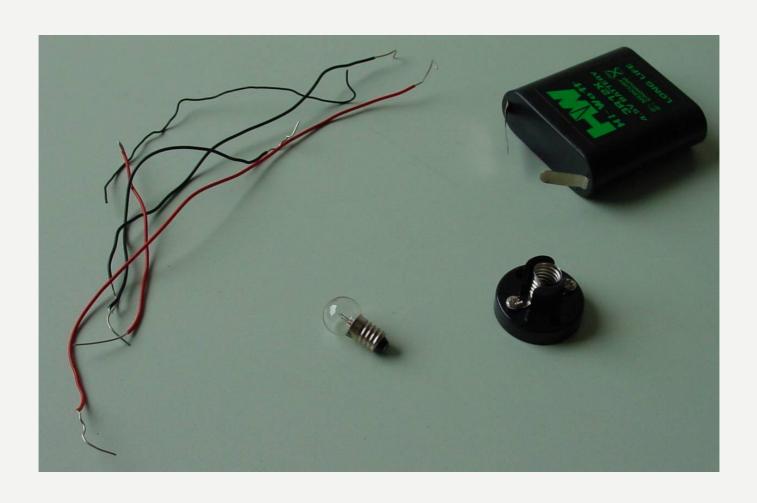
"Ich bin mir selbst sicherer geworden in diesem physikalischen Bereich."

Lehrerfortbildung für den physikbezogenen Sachunterricht

Auf den Lehrer kommt es an...

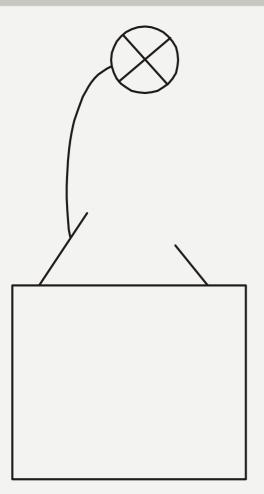
"Vorher hab' ich mir gedacht, das Thema Physik eher nicht. Also ich hatte ja schon mal eine 4. Klasse... Ich hab' am ehesten von anderen Leuten auch gehört, ach, dann lass' ich das Thema Strom weg."

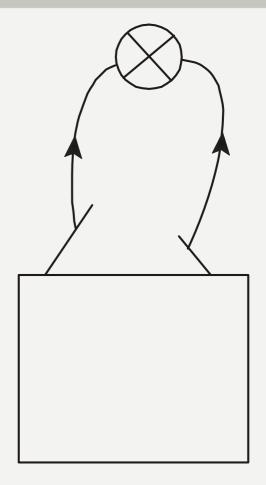
Auf den Lehrer kommt es an...



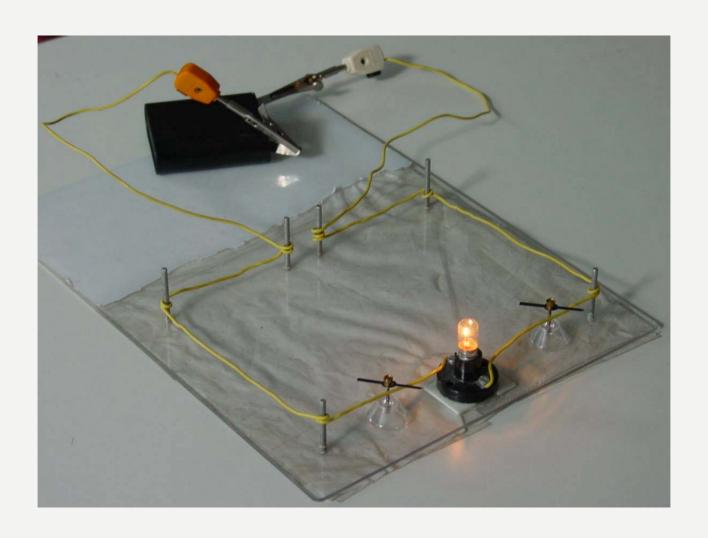
"Und da würd' ich jetzt jedem sagen, wieso, das ist das Beste in dem Jahr: Strom und Magnetismus. Also ich hab' schon festgestellt, die Themenbereiche, wo die Möglichkeit ist zu experimentieren, die reizen und locken mich jetzt sehr.(...) Ich habe gelernt, einfach zu fragen und Theorien durchzuspielen (...). Ich traue mich jetzt einfach."

Ein Beispiel





Ein Beispiel


3/4 der befragten Kinder

Zweizuführungsvorstellung

Ein Beispiel

Physikalische Inhalte im SU

und Grundschulkinder

 Kognitions- und Entwicklungspsychologische Befunde

(z.B. Stern 2003; Sodian & Thoermer 2002)

- Lehr-Lernforschung (z.B. Carey 1985; Möller 2001)
- Forschungen zu Schülervorstellungen (z.B. Wiesner 1984, 1995)
- Unterrichtsforschung (Jonen u.a. 2003, Grygier u.a. 2003)
- IGLU-E (Bos u.a.2003 in: Prenzel u.a.)

Physikalische Inhalte im SU

Inhalte konkret

Teilbereiche	Umfassende Beispiele aus den Lehrwerken			
Thermometer	Temperaturen ablesen, Thermometer herstellen			
Elektrizität/Stromkreis	Herstellen von Stromkreisen, leitende/nichtleitende Stoffe, Elektri- scher Strom im Haushalt, Stromverbrauch, Elektromagnet, Spiele			
Magnetismus	verschiedene Magnete, Stärke der Magnete, Kompass, Spiele, magnetische/nichtmagnetische Gegenstände			
Licht/Schatten	natürliche und künstliche Lichtquellen, Spiegeln von Körpern, hell und dunkel, Spiele			
Wippe/Waage	Gewichte von Gegenständen bestimmen, verschiedene Waagen, Wippe bauen, Gleichgewicht			
Luft	Eigenschaften von Luft, Luft im Alltagsleben, Spiele			
Wasser	Aggregatzustände, Wasserkreislauf, Wasserverbrauch, Wasserreinigung, Schwimmen – Schweben – Sinken			
Wärme	Wärmeleitfähigkeit von Stoffen			
andere Inhalte	Rauminhalt von Körpern, Akustik: hohe und tiefe Töne, Klärwerk, Wasserwerk, Stromerzeugung, Heizung			

Nach Blaseio 2004 In: Kircher 2007

Physikalische Inhalte im SU

und Grundschullehrer

- Naturwissenschaftliche und technische Inhalte haben in der Wahrnehmung der Lehrkräften einen hohen Stellenwert
 - (Möller & Tenberge 2000; Landwehr 2001; Prenzel u.a. 2003; Möller 2004)
- Eher geringes Interesses an Chemie und Physik (z.B. studieren nur ca. 4% der Studierenden des LA Grundschule Physik oder Chemie)
 (Drechsler/Gerlach 2001, Prenzel u.a. 2003, Möller 2004)
- Geringes Selbstvertrauen in Bezug auf das Unterrichten naturwissenschaftlicher Inhalte (Drechsler/Gerlach 2001; Landwehr 2001; Appleton 2002)
- Unzureichende sachliche und fachliche Kompetenz (Webb 1992; Atwood & Atwood 1996; Harlen & Holroyd 1997; Appleton 2002, 2003)

Physikalische Inhalte im SU und Grundschullehrer

Tab.2: Physikausbildung in der Oberstufe

keine Physik	Grundkurs	Leistungskurs	keine Angaben	gesamt
104	84	11*	38	N = 237
44,0%	35,4%	4,6%	16,0%	100%

^{*} dayon 6 auch GK

Tab. 3: Kontakt mit physikalischen Inhalten (in %)

	(0)	(1)	(2)	(3)	(4)	М	SD	N
im Studium	58,3	24,3	8,5	5,5	3,4	0,71	1,06	235
im Vorbereitdienst	47,6	23,0	20,3	6,9	2,2	0,93	1,07	231
auf Fortbildungen	58,6	24,5	13,4	2,2	1,3	0,63	0,89	232
Kontakt im Studium gemieden	23,7	14,5	11,6	19,3	30,9	2,19	1,58	207
Physik. Themen i. d. Fortbild. gemieden	7,4	6,9	10,6	16,1	20,7	2,58	1,37	217

⁽⁰⁾ stimmt gar nicht, (1) stimmt wenig, (2) stimmt teils-teils; (3) stimmt ziemlich, (4) stimmt völlig *Die restlichen Lehrkräfte (38,3%) hatten keine Möglichkeit, physikbezogene Inhalte zu wählen.

Aus- und Fortbildungsziele

Aufbau/Vertiefung

- inhaltsspezifischen Sach- und Fachwissens
- fachdidaktischen Wissens
- unterrichtlicher Handlungskompetenz
- von Interesse an physikbezogenen Inhalten
- von Selbstwirksamkeitserwartung

Erwartungen der Lehrkräfte

"Sie müsste mir auf jeden Fall **Fachwissen** mitgeben. Dass ich einfach, ich mir auch sicher bin, weil mein Physik- und Chemieunterricht und auch mein Biologieunterricht sind schon sehr weit weg. Also nicht nur zeitlich, sondern auch einfach im Kopf weit weg."

"Dass man, dass ich jetzt persönlich vielleicht für mich, mich sicherer fühle."

"Und ich mir da schon eigentlich **konkretes Material** erhoffe. Also das muss ich sagen, ist mir schon wichtig, dass ich auch mal einfach was daheim habe und was rausziehen kann."

L: "Und es gar nicht so klar ist, was die Erkenntnisse eigentlich sein sollen und wo die Kinder hinkommen sollen. Was soll eigentlich rauskommen, woraus die dann auch aufbauen können?(…) Und das fehlt mir dann, dass ich nicht weiß, wo, wie die dann weiter aufbauen."

I: "Also eine Frage danach, was ist das Ziel, das Altersangemessene?" L: "Ja genau."

Erwartungen der Lehrkräfte

"Und ja eben das konkret Praktische. Experimente selber ausprobieren, wo man auch oft zu wenig Zeit dafür verwendet."

"Ich denke, bei mir wär' es es genauso, wie es bei den Schülern auch ist. Wenn man selber auch irgendwas machen kann. (...) Wenn man selber vor so einem Experiment steht und man selber feststellt: so einfach ist das ja irgendwie gar nicht. Also wissen sie, was ich meine? (...) dass man so das eigene Defizit irgendwie ein bisschen gespiegelt bekommt."

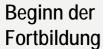
Lernen in einer Lehrerfortbildung

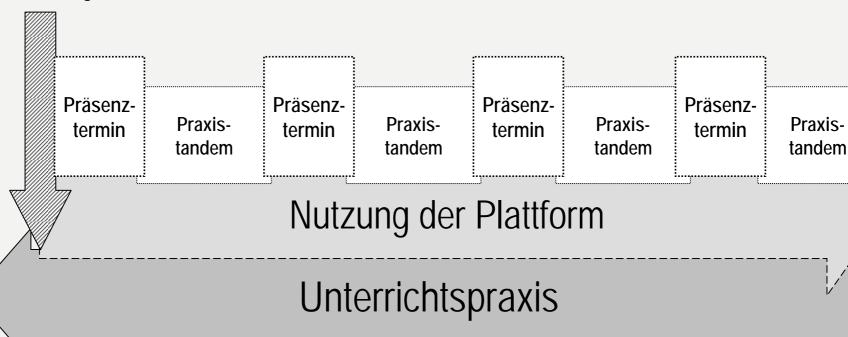
Modifikation subjektiver Theorien

- Schritt: Rekonstruktion/Bewusstmachung , Pädagogischer Doppeldecker
- Schritt: Konstruktion durch kognitiv-emotionale Umstrukturierungsprozesse ⇒ ,Sandwich-Prinzip'
- 3. <u>Schritt</u>: Reflexion selbst wahrgenommener Veränderungen und reales Erproben

Veränderung von Konzepten

- 1. Schritt: Mobilisierung
- 2. Schritt: Artikulation
- 3. Schritt: Herausforderung
- 4. Schritt: Argumentation
- 5. Schritt: Weiterführung

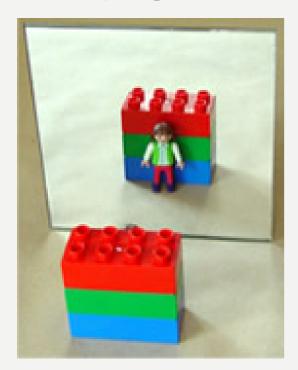



- 1. <u>Schritt:</u> Aktivierung/Konfrontation/Bewusstmachung
- 2. <u>Schritt:</u> Konstruktion neuen Wissens, Reorganisation vorhandener Wissensbestände
- 3. Schritt: Metareflexion und Erprobung

SUPRA – fachdidaktische Fortbildung Konzeption

Fortbildungstage Inhalte

Magnetismus

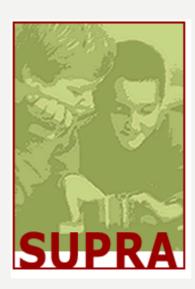

Elektrizitätslehre

Fortbildungstage Inhalte

Spiegel

Licht und Schatten

SUPRA – fachdidaktische Fortbildungstage Ablauf



Didaktische Kommentar/Ziel	(Lern-)Inhalt	Sozialform/Methode
Aktivierung und Erfahrungsaustausch	 Kontaktaufnahme Anknüpfen an die Arbeit während der Transferzeit Einstimmung auf die Inhalte des Fortbildungstages 	Wechselnde KleingruppenKugellager
Erprobung von Lösungsmöglichkeiten bei individuellen Nutzungsproblemen	Arbeit an der Plattform SUPRA	 Partnerarbeit am PC tutorielle Unterstützung durch die Fortbildungsleitung

www.lmu.de/supra

SUPRA – fachdidaktische Fortbildungstage Ablauf

Didaktische Kommentar/Ziel	(Lern-)Inhalt	Sozialform/Methode
 Anknüpfen an die Inhalte des vorigen Fortbildungstages Aufgreifen der Arbeitsaufträge aus der Transferzeit Individuelle Weiterentwicklung des Unterrichtskonzeptes 	Das SUPRA- Unterrichtskonzept zum Inhalt ,Optische Phänomene/Spiegel'	KleingruppendiskussionPlenumsrundeEinzelarbeit

Fortbildungstage

Arbeitsformen

Ernst Klett Verlag

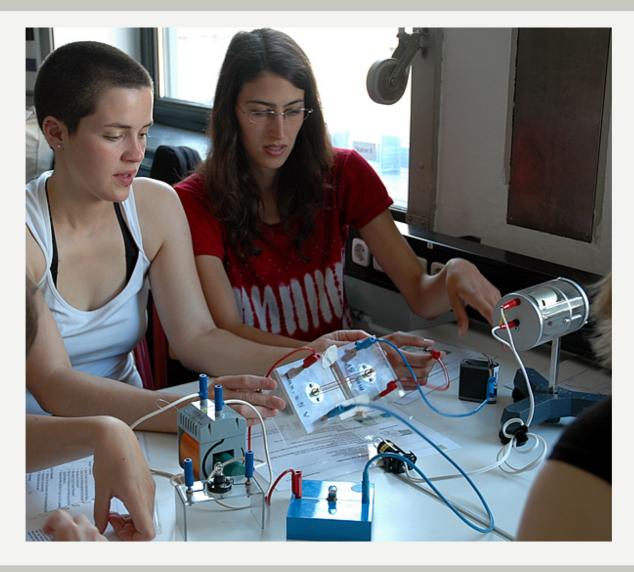
Beobachtungen Austausch Erklärungen

SUPRA – fachdidaktische Fortbildungstage Ablauf

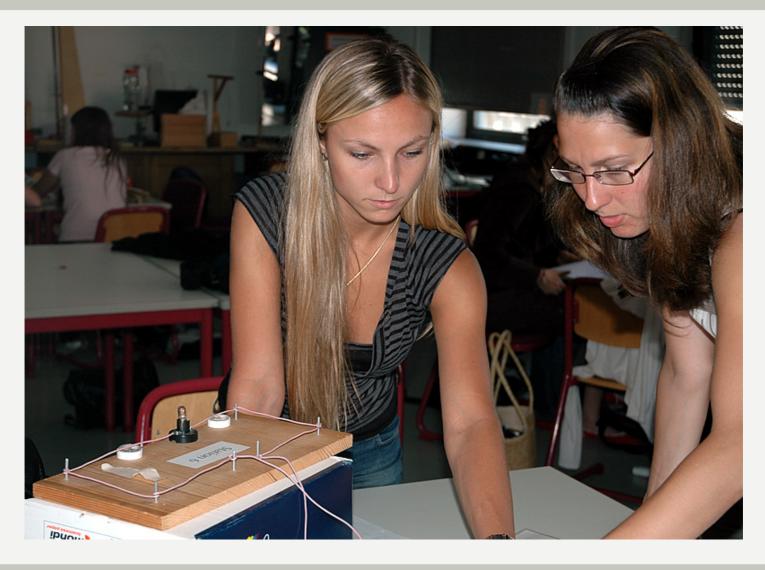
Didaktische Kommentar/Ziel	(Lern-)Inhalt	Sozialform/Methode
 Aktivierung eigener Erfahrungen Vertiefung des fachdidaktischen Wissens 	Versuche im Sachunterricht – Die Bedeutung fachspezifischer Arbeitsweisen im naturwissenschaftlichen Sachunterricht	ImpulsreferatPlenumsrunde
Vertiefung des fachdidaktischen Wissens	Elektrizitätslehre und Magnetismus im Lehrplan	Impulsreferat

SUPRA – fachdidaktische Fortbildungstage Ablauf

Didaktische Kommentar/Ziel	(Lern-)Inhalt	Sozialform/Methode
 Ggf. Aktivierung/ Konfrontation mit bestehender/n Vorstellungen Vertiefung des Sachwissens 	Elektrizitätslehre	 Bearbeitung einfacher Fragen zur elementaren Elektrizitätslehre strukturiertes Lernangebot: Lernstationen zur Elektrizitätslehre Diskussion und Austausch mit Lernpartner und Kollegen instruktionale Hilfen durch die Fortbildungsleitung Plenumsrunde Demonstrationsversuche Erklärungen


Stationen – E-Lehre

- 1. Station: Der einfache Stromkreis
- 2. Station: Gute Leiter Schlechte Leiter
- 3. Station: Schalter bauen
- 4. Station: Elektrostatische Wirkung und elektrische Spannung
- 5. Station: Wärmewirkung der Elektrizität
- 6. Station: Magnetische Wirkung der Elektrizität
- 7. Station: Modellvorstellung Elektronenmodell
- 8. Station: Induktion und Generator



SUPRA – fachdidaktische Fortbildungstage Ablauf

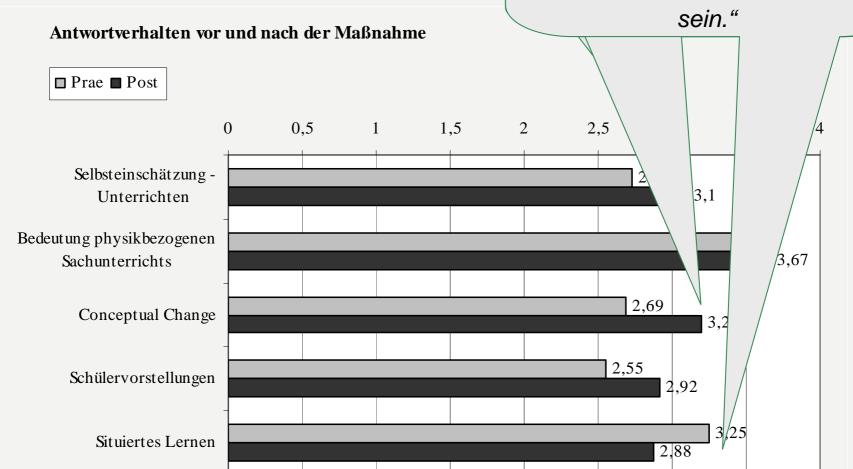
Didaktische Kommentar/Ziel	(Lern-)Inhalt	Sozialform/Methode
Vertiefung des Sachwissens	Bedeutung von Analogien und Modellvorstellungen am Beispiel Elektrizitätslehre	KurzvortragPlenumsrunde
Vertiefung des fachdidaktischen Wissens	Schülervorstellungen zur Elektrizitätslehre	KurzvortragPlenumsrunde
Aufbau von Handlungskompetenz	Bau eines GeschicklichkeitsspielsBau eines elektrischen Lexikons	Einzelarbeit/ Eigenaktivität

SUPRA – fachdidaktische Fortbildungstage Ablauf

Didaktische Kommentar/Ziel	(Lern-)Inhalt	Sozialform/Methode
Tagesevaluation	Rückmeldung	Kartenabfrage
Arbeitsaufträge für die Transferphase	 Wiederholung der Fortbildungsinhalte Das Unterrichtskonzept zur Elektrizitätslehre in SUPRA Adaption und Erprobung in der eigenen Klasse 	 Skript Hinweise zur Arbeit mit der Plattform Hinweise zur Arbeit mit dem Lernpartner

Äußerungen der Lehrkräfte

"Dieser Schwerpunkt "Tun". Ich glaube, das ist auch das Schöne an der Fortbildung, dass es nicht nur gesagt wurde, sondern dass ich selber auch über Tun drankommen konnte. Es ist ja oft so in den Fortbildungen, da wird erklärt, was man tun soll mit den Kindern, aber mit den Erwachsenen wird es nicht getan.


Aber wir lernen ja auch so."

"Dass es für mich eine ganz neues Lernfeld war, das mich als Schüler abgeschreckt hat und für das ich mich jetzt so begeistern kann. Genau das Gegenteil. (...) Also, ich hab' einfach für mich festgestellt, dass für mich Naturwissenschaften einen viel größeren Stellenwert bekommen haben."

Evaluation Wirksamkeit

"Echte und komplexe Problemstellungen aus dem Alltag müssen der Ausgangspunkt des naturwissenschaftlichen SU sein."

Lehrer(fort)bildung im SU

Einflussfaktoren für Erfolg

- qualitatives Verständnis physikalischer Konzepte
- selbstreflexiver Lernprozesses
- Unterrichtsmaterial + Fortbildung
- Experimente müssen erprobt werden
- positive eigene Lernerfahrungen mit physikbezogenen Inhalten
- Kooperation Schule Universität
- Berücksichtigung der Komplexität des Lehrerhandelns
- tutorielle Unterstützung
- Fortbildung ganzer Kollegien
- Lehrplankonformität
- wiederholte Fortbildungsteilnahme
- möglichst ganztägig

Parker und Heywood 2000; Möller u.a. 2006; Drechsler-Köhler 2005; Heran-Dörr 2006; Günther 2006

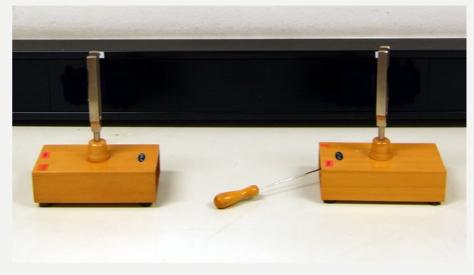
Seminare - 1. Phase

Inhalte

- E-Lehre und Magnetismus
- Licht und Schatten und Schall
- Spiegel und technisches Spielzeug

Methoden

- Lernen an Stationen, Kugellager, STEX-Gruppen, u.a.
- Unterrichtsplanung und Dokumentation
- Analyse von Unterrichtsvideos


Seminare Inhalte zusätzlich

Technisches Spielzeug

Schall

Seminarkonzeption - 1. Phase

Präsentation und Analyse eigener Unterrichtsversuche

Ausblick Konzeption - 2.Phase

- Ziele
- Konzeption: 3 ganztägige fachdidaktische Fortbildungstage verteilt über ein Schuljahr
- 3 Gruppen à 30 TN pro Gruppe ⇒ ca. 90 LAAs pro Jahr
- Inhalte
 - Elektrizitätslehre
 - Magnetismus
 - Spiegel

Ausblick Konzeption - 2.Phase

1. oder 2. AA

Fachdidaktischer Fortbildungstag E-Lehre

Fachdidaktischer Fortbildungstag Magnetismus Fachdidaktischer Fortbildungstag Spiegel

Nutzung der Internetplattform SUPRA

Seminar- und Unterrichtspraxis

Ausblick Forschung

Forschungsfragen

- Erfolgt ein Zuwachs an Sachwissen und fachdidaktischem Wissen?
- Verändern sich selbstbezogene Kognitionen?
- Zeigen sich Auswirkungen im Unterricht?
- Forschungsdesign
 - Vorher/Nachher Vergleich
 - Experimental-/Kontrollgruppenvergleich
- Geplante Erhebungsmethoden
 - Fragebögen
 - Ggf. Unterrichtstagebücher
 - Ggf. Unterrichtsvideos

Ausweitung

- Weiterentwicklung der Plattform
- Weiterentwicklung der bestehenden Konzepte
- Integration multimedialer Anteile
- Entwicklung einer Konzeption für Erzieherinnen

Herzlichen Dank für Ihre Aufmerksamkeit!

www.lmu.de/supra heran@lmu.de